Conductive and Wireless Charging Benchmark Testing and Results

Richard "Barney" Carlson

Idaho National Laboratory

vww.inl.gov

U.S. / China Workshop On PEV and Charging Infrastructure Data Collection and Reporting Idaho Falls, Idaho August 2013 INL/MIS-13-29826

Outline

- Conductive Charging testing
 - Test equipment and scope
 - Level 2 EVSE results
 - DC Fast Charger results
 - On-Board Charger (Ac to DC) testing
- Wireless Charging testing
 - Testing Scope
 - Test equipment and apparatus
 - Testing safety

CONDUCTIVE CHARGING

VEHICLE TECHNOLOGIES PROGRAM

ENERGY Energy Efficiency & Renewable Energy

Electric Vehicle Supply Equipment (EVSE) Test Report: Blink

EVSE Testing at INL

- Benchmark Testing and Reporting
 - Power consumption / Efficiency
 - Standby power
 - Power consumption during charge event
 - Conformance with J1772 standard
 - Safety
 - Compatibility / Interoperability
 - Testing complete and fact Sheets published
 - Twelve (12) Level 2 EVSE (using Volt)
 - One (1) DC Fast Charger (using LEAF)

EVSE Feature EVSE Tested Residential Wall-Mount Un Touch screen PLC. WFi. cellular, LAN cor Web-based bi-directional data flow Backlit scree AC Level 2 User charge scheduling via met, and touc EVSE Specificatio Plug and cord NEMA 6-50 Connector type est lab certifica UL listed Approximate size (H x W x D inches 18 x 22 x 6 AC Level 2 208VAC to 240 VAC +/- 10% Input voltage 30 Amp 40 Amn Circuit heeskee rafi 10/12/201 210.6 60.00 Test Vehicle1. 2011 Chevrolet Vo lake and mode 3.12 vady state charge power (AC kW) 3 30 imum charge power (AC kW) EVSE Text Resulte1.2.4 EVSE consumption prior to charge teady state charge (AC W 125 99 19% EVBE Power in EVBE Power Out EVILE Power

INL EVSE Benchmark Testing Capabilities

- Chroma C8000
 - Programmable AC load (and DC load)
 - 9kW AC load capability
 - J1772 communication and functionality testing
- Hioki 3390 power meter
 - 4 channel AC or DC current, voltage, power, integrated amp hours and energy, power factor, harmonics, etc.
- GridTest "Car in a Box" J1772 EVSE tester
 - 50 automated tests
 - Multiple State verification and Fault tests
 - GFCI safety testing
- Custom break-out box for multiple, non-invasive current and voltage measurements on input & output side of EVSE

aho National Laboratory

Conductive EVSE Energy Consumption

- AC energy consumption measured at rest & during Chevrolet Volt charging
- Most EVSE consume 13 Watts or less at rest
- Higher power used at rest is tied to more EVSE features
- Most EVSE consume under 30 Watts during charge

DCFC Benchmarking – Leaf Charging

http://avt.inel.gov/pdf/evse/DCFCHasetec.pdf

30

25

Conductive System Benchmarking

Entire report located at: http://avt.inel.gov/pdf/phev/EfficiencyResultsChevroletVoltOnBoardCharger.pdf

WIRELESS CHARGING

INL Wireless Charging Testing

- Benchmark testing of Wireless Charging Technologies
 - Laboratory system level testing at INL
 - Vehicle system testing
- <u>Scope</u>: Provide Results from Testing
 - System Efficiency (AC input to DC output)
 - Electric and Magnetic Field Strength (EM field)
 - Impact on Grid (power quality, harmonics, etc.)
 - Support SAE J2954 committee

INL Wireless Charging Test Parameters

- Parameters tested that impact primary scope
 - Coil Misalignment (X, Y, θ , Tilt, and Gap)
 - Power transfer at various level
 - Magnetic & Electric field strength at various locations
 - Temperature (warm-up impact)
 - Operating Frequency
 - Debris in between or near coils
 - Coil interoperability
 - Company A ground coil
 - Company B vehicle coil

INL Wireless Charging Test Equipment

- Programmable Loads
 - AC Loads (9.0 kW) Chroma 63804
 - DC loads (58 kW) Chroma 63210
- Hioki 3390 Power Meter
 - 4 channel AC and DC current and voltage
 - Real-time integration for power & energy
- NARDA EHP-200a
 - Electric Field
 - Magnetic Field
- FLIR SC640 Thermal Camera
- Fiberglass uni-strut with multi-axis positioning system

T/2

- CAN communications (as required)
- Custom LabVIEW data acquisition and test host to synchronize multiple data streams

INL Wireless Charging LaboratoryTesting

INL Wireless Charger Coil Positioning

- Primary Coil
 - Software position control
 - Ball-screw table with servo motor actuation
 - X, Y, θ
 - Supported by polycarbonate stand-off (distance from EM)
- Secondary Coil
 - Suspended from fiberglass unistrut frame
 - Manually adjusted to fixed position
 - Z position (coil to coil Gap)
 - Tilt by differential Z

Polycarbonate Primary Coil Support

INL Wireless Charging: EM Field Measurement

- NARDA EHP-200a mounted relative to secondary coil
 - Adjustable position from >1.0m to edge of secondary coil in Y-axis direction
 - Z position: typically centered between coils (adjustable)
 - Test plans measurements include
 - Along Y-axis
 - 0.5m, 0.8m, 1.0m, 1.3m
 - Above secondary coil
 - Below primary coil

Narda EM Field Meter (EHP-200a)

Safety is #1 priority : INL Wireless Charging Testing

- EM field ICNIRP limit: 6.25 μT
 - (International Commission on Non-Ionizing Radiation Protection)
- INL boundary set at 1.0m from coils center
 - INL pre-test "worst-case EM field" measurement for every WPT system to ensure proper boundary distance (increase if necessary)
 - Also prevents positioning system
 "pinch-point" hazard
- Warning Signs posted
 - Building entrance
 - Personnel with pacemakers
 - At boundary around wireless charger
 - Beyond the point: Electromagnetic fields

Electromagnetic Field

sonnel with pacemakers or other ctronic medical devices/implants nust remain >8 feet away in any action while the wireless charging system is in operation.

ntact the LSC upon entry to IF-605

Beyond this point: Electromagnetic fields exceed the occupational exposure limit for human exposure.

Do not enter when "Test in Progress" sig

Safety is #1 priority : INL Wireless Charging Testing

- E-Stop buttons
 - Power shut down (AC supply disconnect)
 - Positioning system shut down
- FLIR Infrared camera
 - Monitor temperatures near coils since Magnetic field may cause excessive localized heating in debris / foreign objects

Idaho National Laboratory

Summary

- INL has completed testing on twelve Level 2 EVSE & one DCFC
 - Fact Sheets are posted on http://avt.inel.gov/evse.shtml
- INL is currently testing the first Wireless Charging System
 - A fact sheet will soon be published showing the results for:
 - Efficiency and EM field
 - Gap
 - Power
 - Coil to Coil alignment
 - EM field meter location
 - Temperature (warm-up impact)
 - Power Quality and Harmonics
 - Surface Temperature (customer accessible areas)

Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

More Information

http://avt.inl.gov